论文标题
外观获取的神经反射率领域
Neural Reflectance Fields for Appearance Acquisition
论文作者
论文摘要
我们提出了神经反射场,这是一种新型的深层场景表示,该表示使用完全连接的神经网络在场景中的任何3D点编码体积密度,正常和反射率特性。我们将此表示形式与一个基于物理的可区分射线行进框架相结合,该框架可以在任何观点和光线下从神经反射场中呈现图像。我们证明,可以从用简单的摄像机光设置捕获的图像中估算神经反射率场,并准确地对具有复杂的几何形状和反射率的真实场景的外观进行建模。一旦估计,它们可用于在新颖的观点和(非集中)照明条件下呈现照片现实的图像,并准确地再现诸如镜面,阴影和遮挡之类的挑战性效果。这使我们可以执行高质量的视图合成和重新确定,这比以前的方法明显好。我们还证明,我们可以使用传统场景模型组成真实场景的估计神经反射率领域,并使用标准的蒙特卡洛渲染引擎将其渲染。因此,我们的工作使一条完整的管道从高质量和实用的外观获取到3D场景组成和渲染。
We present Neural Reflectance Fields, a novel deep scene representation that encodes volume density, normal and reflectance properties at any 3D point in a scene using a fully-connected neural network. We combine this representation with a physically-based differentiable ray marching framework that can render images from a neural reflectance field under any viewpoint and light. We demonstrate that neural reflectance fields can be estimated from images captured with a simple collocated camera-light setup, and accurately model the appearance of real-world scenes with complex geometry and reflectance. Once estimated, they can be used to render photo-realistic images under novel viewpoint and (non-collocated) lighting conditions and accurately reproduce challenging effects like specularities, shadows and occlusions. This allows us to perform high-quality view synthesis and relighting that is significantly better than previous methods. We also demonstrate that we can compose the estimated neural reflectance field of a real scene with traditional scene models and render them using standard Monte Carlo rendering engines. Our work thus enables a complete pipeline from high-quality and practical appearance acquisition to 3D scene composition and rendering.