论文标题

通过搜索高质量的量子控制脉冲来评估三种闭环学习算法

Assessing three closed-loop learning algorithms by searching for high-quality quantum control pulses

论文作者

Yang, Xiao-dong, Arenz, Christian, Pelczer, Istvan, Chen, Qi-Ming, Wu, Re-Bing, Peng, Xin-hua, Rabitz, Herschel

论文摘要

设计高质量控制对于可靠的量子计算至关重要。在现有方法中,闭环倾斜控制是一个有效的选择。它的效率取决于所采用的学习算法,因此应对其实际应用进行算法比较。在这里,我们通过寻找高质量的控制脉冲来准备钟形状态,评估三种代表性学习算法,包括梯度上升脉冲工程(葡萄),改善的Nelder-Mead(NMPLUS)和差异演化(DE)。我们首先在核磁共振系统中实验实现每种算法,然后考虑一些可能的重要实验不确定性的影响。该实验报告了通过三种算法以不同的收敛速度成功制备高保真目标状态,当潜在的不确定性可忽略不计时时,这些结果与数值模拟相吻合。但是,在某些明显的不确定性下,这些算法在其由此产生的精度和效率方面具有明显的性能。这项研究提供了洞察力,以帮助在现实的物理场景中实际应用不同的闭环学习算法。

Designing a high-quality control is crucial for reliable quantum computation. Among the existing approaches, closed-loop leaning control is an effective choice. Its efficiency depends on the learning algorithm employed, thus deserving algorithmic comparisons for its practical applications. Here, we assess three representative learning algorithms, including GRadient Ascent Pulse Engineering (GRAPE), improved Nelder-Mead (NMplus) and Differential Evolution (DE), by searching for high-quality control pulses to prepare the Bell state. We first implement each algorithm experimentally in a nuclear magnetic resonance system and then conduct a numerical study considering the impact of some possible significant experimental uncertainties. The experiments report the successful preparation of the high-fidelity target state with different convergence speeds by the three algorithms, and these results coincide with the numerical simulations when potential uncertainties are negligible. However, under certain significant uncertainties, these algorithms possess distinct performance with respect to their resulting precision and efficiency. This study provides insight to aid in the practical application of different closed-loop learning algorithms in realistic physical scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源