论文标题
在二维周期性表面上集合的活动粒子集合的动力学
Dynamics of a collection of active particles on a two-dimensional periodic undulated surface
论文作者
论文摘要
我们研究二维周期性表面上的圆形活性颗粒(AP)的动力学。每个粒子都有一个内部能量机制,该机制由活性摩擦力建模,并由活动参数$ v_0 $控制。如果粒子的速度小于$ v_0 $,否则否则,它就起作用。表面起伏是由固定振幅和波长的周期性起伏建模的,并以幅度和波长的无量音比($ \ bar {h} $)进行测量。研究粒子的动力学用于不同的活动,$ v_0 $和表面起伏(su),$ \ bar {h} $。在不同的活性和SU上观察到三种类型的粒子动力学。对于小$ v_0 \ Lessim 0.1 $和$ \ bar {h} $ $ \ gtrsim 0.8 $,粒子保持在表面最小值中,对于中等$ v_0 \ lyssim \ bar {h h} $,粒子的动力学,粒子的动力学显示了以后的$ v_0 \ g g g g gtriffer to in InterMediage to to到较晚的扩散。对于所有$ v_0 $和$ \ bar {h} \ Lessim 0.2 $,粒子的动力学满足有效扩散率和速度自动相关函数之间的绿色kubo关系。在增加$ \ bar {h} $上发现系统偏差。因此,可以在此非平衡系统中为一系列系统参数建立有效的平衡。
We study the dynamics of circular active particles (AP) on a two dimensional periodic undulated surface. Each particle has an internal energy mechanism which is modeled by an active friction force and it is controlled by an activity parameter $v_0$. It acts as negative friction if the speed of the particle is smaller than $v_0$ and normal friction otherwise. Surface undulation is modeled by the periodic undulation of fixed amplitude and wavelength and is measured in terms of a dimensionless ratio of amplitude and wavelength, $\bar{h}$. The dynamics of the particle is studied for different activities, $v_0$ and surface undulations (SU), $\bar{h}$. Three types of particle dynamics are observed on varying activity and SU. For small $v_0 \lesssim 0.1$ and $\bar{h}$ $\gtrsim 0.8$, particles remain confined in a surface minimum, for moderate $v_0 \lesssim \bar{h}$, dynamics of particle shows an intermediate subdiffusion to late time diffusion and for large $v_0 \gtrsim \bar{h}$, it shows initial superdiffusion to late time diffusion. For all $v_0$'s and $\bar{h} \lesssim 0.2$, the dynamics of particle, satisfies the Green-Kubo relation between the effective diffusivity and velocity auto-correlation function. Systematic deviation is found on increasing $\bar{h}$. Hence, an effective equilibrium can be established for a range of system parameters in this nonequilibirum system.