论文标题
广义Boiti-Leon-Pempinelli方程的谎言对称性和相似性转换
Lie Symmetries and Similarity transformations for the Generalized Boiti-Leon-Pempinelli equations
论文作者
论文摘要
我们对Lie点对称性的详细分类以及广义Boiti-Leon-Pempinelli方程的相似性转换。两个非线性1+2偏微分方程的二阶和三阶偏微分方程的系统方程。非线性方程取决于两个参数,即$ n $和$ m $,从那里我们发现这两个参数的各种值所产生的系统允许不同数量的lie点对称性。对于每种情况,我们都会介绍接纳的谎言组的完整分析,并确定一维最佳系统遵循的所有可能相似性解决方案。最后,我们通过以表格方式呈现结果来总结结果。
We perform a detailed classification of the Lie point symmetries and of the resulting similarity transformations for the Generalized Boiti-Leon-Pempinelli equations. The latter equations for a system of two nonlinear 1+2 partial differential equations of second- and third-order. The nonlinear equations depend of two parameters, namely $n$ and $m$, from where we find that for various values of these two parameters the resulting systems admit different number of Lie point symmetries. For every case, we present the complete analysis for the admitted Lie group as also we determine all the possible similarity solutions which follow from the one-dimensional optimal system. Finally, we summarize the results by presenting them in a tabular way.