论文标题

基于合理插值的自加工根搜索和优化方法

Self-accelerating root search and optimisation methods based on rational interpolation

论文作者

Cassel, Sebastian

论文摘要

基于Barycentric有理插值的迭代方法得出了表现出加速收敛顺序的迭代方法。对于单变量的根搜索,无衍生方法方法接近二次收敛和第一衍生方法方法方法分数收敛。为了单变量优化,无衍生方法的收敛顺序接近1.62,而第一衍生方法的顺序接近2.42。通常,在低内存迭代方法方面发现了性能优势。在优化问题中,在每个步骤中计算目标函数和梯度时,全书迭代方法渐近地收敛于1.8倍的速度比SECANT方法快1.8倍。还提出了用于多元根搜索和优化的框架,尽管没有发现实际参数选择。

Iteration methods based on barycentric rational interpolation are derived that exhibit accelerating orders of convergence. For univariate root search, the derivative-free methods approach quadratic convergence and the first-derivative methods approach cubic convergence. For univariate optimisation, the convergence order of the derivative-free methods approaches 1.62 and the order of the first-derivative methods approaches 2.42. Generally, performance advantages are found with respect to low-memory iteration methods. In optimisation problems where the objective function and gradient is calculated at each step, the full-memory iteration methods converge asymptotically 1.8 times faster than the secant method. Frameworks for multivariate root search and optimisation are also proposed, though without discovery of practical parameter choices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源