论文标题

层次放松,以最大程度地减少分层混合规范

Epigraphical Relaxation for Minimizing Layered Mixed Norms

论文作者

Kyochi, Seisuke, Ono, Shunsuke, Selesnick, Ivan

论文摘要

本文提出了一种用于不可x型混合规范最小化的Epraphical Helization(ERX)技术。混合规范正则化方法在信号重建和处理中起着核心作用,在信号重建和处理中,它们的优化依赖于可以有效地计算混合规范的接近性运算符的事实。为了提出正则化的功能,可以捕获固有信号结构的混合规范的复杂分层建模是关键成分,但是这种混合规范的接近近端运算符通常无法使用(不可x耐)。我们的ERX将一个分层的非可点混合规范分解为规范和多个题材约束。这使我们能够在优化方面处理各种不可x的混合规范,只要最外面规范的近端运算符和对每个题词约束的投影都是有效计算的。此外,在轻度条件下,我们证明ERX并没有改变原始问题的最小化器,尽管放宽了平等限制到不平等的限制。我们还基于ERX开发了新的正规化器:一种是颜色图像恢复的反相关的结构调整总变化,另一个是低级别振幅恢复的振幅 - 光谱核标准。我们通过实验检查了这些正规化器的功能,这说明了ERX的效用。

This paper proposes an epigraphical relaxation (ERx) technique for non-proximable mixed norm minimization. Mixed norm regularization methods play a central role in signal reconstruction and processing, where their optimization relies on the fact that the proximity operators of the mixed norms can be computed efficiently. To bring out the power of regularization, sophisticated layered modeling of mixed norms that can capture inherent signal structure is a key ingredient, but the proximity operator of such a mixed norm is often unavailable (non-proximable). Our ERx decouples a layered non-proximable mixed norm into a norm and multiple epigraphical constraints. This enables us to handle a wide range of non-proximable mixed norms in optimization, as long as both the proximal operator of the outermost norm and the projection onto each epigraphical constraint are efficiently computable. Moreover, under mild conditions, we prove that ERx does not change the minimizer of the original problem despite relaxing equality constraints into inequality ones. We also develop new regularizers based on ERx: one is decorrelated structure-tensor total variation for color image restoration, and the other is amplitude-spectrum nuclear norm for low-rank amplitude recovery. We examine the power of these regularizers through experiments, which illustrates the utility of ERx.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源