论文标题

基于脑电图的听觉注意力解码:迈向神经传导的听力设备

EEG-based Auditory Attention Decoding: Towards Neuro-Steered Hearing Devices

论文作者

Geirnaert, Simon, Vandecappelle, Servaas, Alickovic, Emina, de Cheveigné, Alain, Lalor, Edmund, Meyer, Bernd T., Miran, Sina, Francart, Tom, Bertrand, Alexander

论文摘要

患有听力障碍的人通常很难参加所谓的“鸡尾酒会”场景,与多个人同时交谈。尽管存在高级算法来抑制这些情况下的背景噪声,但听力设备还需要信息,以了解用户实际打算参加的这些扬声器。然后,可以使用此信息来增强正确的(参加)扬声器,所有其他扬声器都可以视为背景噪音。最近的神经科学进步表明,可以从非侵入性神经记录技术(例如脑电图(EEG))中确定听觉注意力的重点。基于这些新见解,已经提出了大量听觉注意解码(AAD)算法,可以将其与适当的扬声器分离算法和微型EEG EEG传感器设备结合使用,从而导致所谓的神经启动的听力设备。在本文中,我们对基于EEG的AAD算法进行了广泛的综述和统计基础的比较研究,并应对该领域的主要信号处理挑战。

People suffering from hearing impairment often have difficulties participating in conversations in so-called `cocktail party' scenarios with multiple people talking simultaneously. Although advanced algorithms exist to suppress background noise in these situations, a hearing device also needs information on which of these speakers the user actually aims to attend to. The correct (attended) speaker can then be enhanced using this information, and all other speakers can be treated as background noise. Recent neuroscientific advances have shown that it is possible to determine the focus of auditory attention from non-invasive neurorecording techniques, such as electroencephalography (EEG). Based on these new insights, a multitude of auditory attention decoding (AAD) algorithms have been proposed, which could, combined with the appropriate speaker separation algorithms and miniaturized EEG sensor devices, lead to so-called neuro-steered hearing devices. In this paper, we provide a broad review and a statistically grounded comparative study of EEG-based AAD algorithms and address the main signal processing challenges in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源