论文标题

使用网络嵌入来改善网络对齐

Using Network Embeddings for Improving Network Alignment

论文作者

Guzzi, Pietro Hiram

论文摘要

网络(或图形)比对算法旨在揭示图之间的结构相似性。特别是本地网络对齐算法(LNA)发现两个或多个网络之间相似性的本地区域。这种算法通常是基于用于生长比对的一组种子节点。几乎所有的LNA算法用作种子节点基于上下文信息(例如,在生物网络对齐中的一组生物学相关),这可能会导致偏见或数据循环问题。最近,我们证明,在选择种子节点的选择中使用拓扑信息可以提高对齐的质量。我们使用了一些基于全球对齐算法的常见方法来捕获节点之间的拓扑相似性。同时,已经证明,使用网络嵌入方法(或表示学习)可以比其他方法更好地捕获节点之间的结构相似性。因此,我们建议使用网络嵌入来学习节点之间的结构相似性,并使用这种相似性来改善LNA扩展,以提高我们以前的算法。我们为LNA定义了一个框架。

Network (or Graph) Alignment Algorithms aims to reveal structural similarities among graphs. In particular Local Network Alignment Algorithms (LNAs) finds local regions of similarity among two or more networks. Such algorithms are in general based on a set of seed nodes that are used to grow an alignment. Almost all LNAs algorithms use as seed nodes a set of vertices based on context information (e.g. a set of biologically related in biological network alignment) and this may cause a bias or a data-circularity problem. More recently, we demonstrated that the use of topological information in the choice of seed nodes may improve the quality of the alignments. We used some common approaches based on global alignment algorithms for capturing topological similarity among nodes. In parallel, it has been demonstrated that the use of network embedding methods (or representation learning), may capture the structural similarity among nodes better than other methods. Therefore we propose to use network embeddings to learn structural similarity among nodes and to use such similarity to improve LNA extendings our previous algorithms. We define a framework for LNA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源