论文标题

基于模型的质量多样性搜索有效的机器人学习

Model-Based Quality-Diversity Search for Efficient Robot Learning

论文作者

Keller, Leon, Tanneberg, Daniel, Stark, Svenja, Peters, Jan

论文摘要

尽管机器人学习最近取得了进展,但编程机器人以处理开放式对象操纵任务仍然是一个挑战。最近用来自主产生多种技能曲目的一种方法是基于新颖的质量多样性〜(QD)算法。但是,作为大多数进化算法,QD都具有样本信息,因此将其应用于现实世界情景是一项挑战。本文通过整合一个将扰动参数的行为整合到基于新颖的QD算法的神经网络来解决此问题。在拟议的基于模型的质量多样性搜索(M-QD)中,该网络经过同时培训到曲目,并用于避免在新颖性搜索过程中执行毫无疑问的动作。此外,它用于适应最终曲目的技能,以将技能推广到不同的情况。我们的实验表明,通过这种正向模型增强QD算法可以提高进化过程的样本效率和性能和技能适应。

Despite recent progress in robot learning, it still remains a challenge to program a robot to deal with open-ended object manipulation tasks. One approach that was recently used to autonomously generate a repertoire of diverse skills is a novelty based Quality-Diversity~(QD) algorithm. However, as most evolutionary algorithms, QD suffers from sample-inefficiency and, thus, it is challenging to apply it in real-world scenarios. This paper tackles this problem by integrating a neural network that predicts the behavior of the perturbed parameters into a novelty based QD algorithm. In the proposed Model-based Quality-Diversity search (M-QD), the network is trained concurrently to the repertoire and is used to avoid executing unpromising actions in the novelty search process. Furthermore, it is used to adapt the skills of the final repertoire in order to generalize the skills to different scenarios. Our experiments show that enhancing a QD algorithm with such a forward model improves the sample-efficiency and performance of the evolutionary process and the skill adaptation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源