论文标题

使用神经网络对3D脑扫描的多模式分割

Multi-modal segmentation of 3D brain scans using neural networks

论文作者

Zopes, Jonathan, Platscher, Moritz, Paganucci, Silvio, Federau, Christian

论文摘要

目的:基于卷积神经网络实施脑部分割管道,该管道迅速将3D量分为27个解剖结构。在各种磁共振成像(MRI)和计算机断层扫描(CT)扫描的各种对比度上进行分割性能提供了广泛的比较研究。方法:深度卷积神经网络经过训练,可训练3D MRI(Mprage,DWI,FLAIR)和CT扫描。总共851次MRI/CT扫描的大型数据库用于神经网络培训。培训标签是在Mprage对比度上获得的,并与其他成像方式相关。使用DICE度量标准对分割质量进行了总共27个解剖结构进行量化。实施辍学采样以识别损坏的输入扫描或低质量的细分。在图形处理单元上不到1秒的处理时间内,获得了超过200万素体素的3D体积的完整分割。结果:最佳平均骰子得分是在$ t_1 $加权的mprage上找到的($ 85.3 \ pm4.6 \,\%$)。但是,对于Flair($ 80.0 \ pm7.1 \,\%$),DWI($ 78.2 \ pm7.9 \,\%$)和CT($ 79.1 \ pm 7.9 \,\%$),良好质量分割对于大多数解剖学结构都是可行的。可以使用辍学抽样检测到损坏的输入量或低质量分段。结论:深度卷积神经网络的灵活性和性能可以实现FLAIR,DWI和CT扫描的直接,实时细分,而无需进行$ T_1 $ WATEM的扫描。

Purpose: To implement a brain segmentation pipeline based on convolutional neural networks, which rapidly segments 3D volumes into 27 anatomical structures. To provide an extensive, comparative study of segmentation performance on various contrasts of magnetic resonance imaging (MRI) and computed tomography (CT) scans. Methods: Deep convolutional neural networks are trained to segment 3D MRI (MPRAGE, DWI, FLAIR) and CT scans. A large database of in total 851 MRI/CT scans is used for neural network training. Training labels are obtained on the MPRAGE contrast and coregistered to the other imaging modalities. The segmentation quality is quantified using the Dice metric for a total of 27 anatomical structures. Dropout sampling is implemented to identify corrupted input scans or low-quality segmentations. Full segmentation of 3D volumes with more than 2 million voxels is obtained in less than 1s of processing time on a graphical processing unit. Results: The best average Dice score is found on $T_1$-weighted MPRAGE ($85.3\pm4.6\,\%$). However, for FLAIR ($80.0\pm7.1\,\%$), DWI ($78.2\pm7.9\,\%$) and CT ($79.1\pm 7.9\,\%$), good-quality segmentation is feasible for most anatomical structures. Corrupted input volumes or low-quality segmentations can be detected using dropout sampling. Conclusion: The flexibility and performance of deep convolutional neural networks enables the direct, real-time segmentation of FLAIR, DWI and CT scans without requiring $T_1$-weighted scans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源