论文标题

加强自动驾驶中严重性语义分割的瓦斯恒星培训

Reinforced Wasserstein Training for Severity-Aware Semantic Segmentation in Autonomous Driving

论文作者

Liu, Xiaofeng, Zhang, Yimeng, Liu, Xiongchang, Bai, Song, Li, Site, You, Jane

论文摘要

语义分割对于许多实际系统,例如自动驾驶汽车,这对每个像素的类别都很重要。最近,深网取得了重大进展W.R.T.与跨侧拷贝损失的平均交叉联合(MIOU)。但是,跨透明镜损失基本上可以忽略具有不同预测错误的自动驾驶汽车的严重程度差异。例如,将汽车预测到道路上比将其视为公共汽车要多得多。针对这一困难,我们开发了一个Wasserstein培训框架,以通过将其地面度量定义为错误分类的严重性来探索类间的相关性。在特定任务的经验之后,可以预定瓦斯恒星距离的地面度量。从优化的角度来看,我们进一步建议将基础度量设置为预定义的地面度量的越来越多的功能。此外,提出了一个自适应学习的方案,以利用高保真性CARLA模拟器。具体来说,我们遵循强化替代学习计划。 Camvid和CityScapes数据集的实验证明了我们的Wasserstein损失的有效性。可以按照插件的方式对SEGNET,ENET,FCN和DEEPLAB网络进行调整。我们在预定义的重要类别以及模拟器中的连续游戏时间更长的时间上取得了重大改进。

Semantic segmentation is important for many real-world systems, e.g., autonomous vehicles, which predict the class of each pixel. Recently, deep networks achieved significant progress w.r.t. the mean Intersection-over Union (mIoU) with the cross-entropy loss. However, the cross-entropy loss can essentially ignore the difference of severity for an autonomous car with different wrong prediction mistakes. For example, predicting the car to the road is much more servery than recognize it as the bus. Targeting for this difficulty, we develop a Wasserstein training framework to explore the inter-class correlation by defining its ground metric as misclassification severity. The ground metric of Wasserstein distance can be pre-defined following the experience on a specific task. From the optimization perspective, we further propose to set the ground metric as an increasing function of the pre-defined ground metric. Furthermore, an adaptively learning scheme of the ground matrix is proposed to utilize the high-fidelity CARLA simulator. Specifically, we follow a reinforcement alternative learning scheme. The experiments on both CamVid and Cityscapes datasets evidenced the effectiveness of our Wasserstein loss. The SegNet, ENet, FCN and Deeplab networks can be adapted following a plug-in manner. We achieve significant improvements on the predefined important classes, and much longer continuous playtime in our simulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源