论文标题

木星的迁徙能否加速金星的大气进化?

Could the Migration of Jupiter have Accelerated the Atmospheric Evolution of Venus?

论文作者

Kane, Stephen R., Vervoort, Pam, Horner, Jonathan, Pozuelos, Francisco J.

论文摘要

在研究行星宜居性和陆地大气进化的研究中,金星和地球表面条件的差异仍然是积极研究的领域。在对金星气候历史的内在和外部影响中,由于巨型行星迁移引起的轨道变化,这些变化既有变化的入射通量和潮汐加热后果。在这里,我们介绍了一项研究的结果,该研究探讨了木星的位置对金星轨道参数以及随后潜在的水分流失情景的影响。我们的动态模拟表明,乔维亚迁移的各种情况可能导致金星的轨道偏心率高达0.31。我们量化了增加的偏心率的含义,包括潮汐能,表面能通量以及可变的淡淡的幼年太阳的可变的破裂通量。潮汐循环时间尺度计算表明,需要相对较高的潮汐耗散因子来降低金星的偏心率对现值,这意味着高初始水库存。我们进一步估计高轨道偏心率对水分流失的后果,估计与轨道强迫相比,与圆形轨道案例相比,水损失率可能至少增加了$ \ sim $ 5 \%。我们认为,年轻的金星的这些怪异变化可能加速了金星向大气中不可避免地崩溃到一个失控的温室状态的大气进化。巨型行星在超球星系中的存在可能同样可以提高这些系统中金星类似物的预期速率。

In the study of planetary habitability and terrestrial atmospheric evolution, the divergence of surface conditions for Venus and Earth remains an area of active research. Among the intrinsic and external influences on the Venusian climate history are orbital changes due to giant planet migration that have both variable incident flux and tidal heating consequences. Here, we present the results of a study that explores the effect of Jupiter's location on the orbital parameters of Venus and subsequent potential water loss scenarios. Our dynamical simulations show that various scenarios of Jovian migration could have resulted in orbital eccentricities for Venus as high as 0.31. We quantify the implications of the increased eccentricity, including tidal energy, surface energy flux, and the variable insolation flux expected from the faint young Sun. The tidal circularization timescale calculations demonstrate that a relatively high tidal dissipation factor is required to reduce the eccentricity of Venus to the present value, which implies a high initial water inventory. We further estimate the consequences of high orbital eccentricity on water loss, and estimate that the water loss rate may have increased by at least $\sim$5\% compared with the circular orbit case as a result of orbital forcing. We argue that these eccentricity variations for the young Venus may have accelerated the atmospheric evolution of Venus towards the inevitable collapse of the atmosphere into a runaway greenhouse state. The presence of giant planets in exoplanetary systems may likewise increase the expected rate of Venus analogs in those systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源