论文标题
HOPF行动的学位界限
Degree bounds for Hopf actions on Artin-Schelter regular algebras
论文作者
论文摘要
我们研究了半神经hopf代数对Artin-Schelter常规代数的作用,并证明了不变次数的最小发电机的程度,以及在不变次数上的模块的Syzygies程度上的几个上限。这些结果是Noether,Fogarty,Fleischmann,Derksen,Sidman,Chardin和Symonds证明的对交换多项式环的团体作用的结果类似。
We study semisimple Hopf algebra actions on Artin-Schelter regular algebras and prove several upper bounds on the degrees of the minimal generators of the invariant subring, and on the degrees of syzygies of modules over the invariant subring. These results are analogues of results for group actions on commutative polynomial rings proved by Noether, Fogarty, Fleischmann, Derksen, Sidman, Chardin, and Symonds.