论文标题

使用福利成本比时对特征检测的含义

Implications on Feature Detection when using the Benefit-Cost Ratio

论文作者

Jagdhuber, Rudolf, Rahnenführer, Jörg

论文摘要

在许多实用的机器学习应用中,有两个目标:一个是最大化预测精度,另一个是最大程度地降低所得模型的成本。单个功能的这些成本可能是财务成本,但也可以指其他方面,例如评估时间。特征选择解决了这两个目标,因为它减少了功能的数量并可以提高模型的概括能力。如果功能之间的成本不同,则功能选择需要权衡每个功能的个人收益和成本。一个流行的权衡选择是两者的比率,即BCR(福利成本比)。在本文中,我们分析使用此措施以特殊重点的含义,以区分相关特征和噪声的能力。我们对不同的成本和数据设置进行了模拟研究,并获得相关特征的检测率和权衡比率的经验分布。我们的模拟研究暴露了成本设置对检测率的明显影响。在成本差异很大且效果较小的情况下,BCR错过了相关功能和首选的廉价噪声功能。我们得出的结论是,预测性能与成本之间的权衡不控制超参数很容易过度强调非常便宜的噪声特征。虽然简单的福利成本比例提供了一个简单的解决方案来纳入成本,但重要的是要了解其风险。避免成本接近0,重新恢复大量成本差异或使用超参数折衷是抵消本文暴露的不良反应的方法。

In many practical machine learning applications, there are two objectives: one is to maximize predictive accuracy and the other is to minimize costs of the resulting model. These costs of individual features may be financial costs, but can also refer to other aspects, like for example evaluation time. Feature selection addresses both objectives, as it reduces the number of features and can improve the generalization ability of the model. If costs differ between features, the feature selection needs to trade-off the individual benefit and cost of each feature. A popular trade-off choice is the ratio of both, the BCR (benefit-cost ratio). In this paper we analyze implications of using this measure with special focus to the ability to distinguish relevant features from noise. We perform a simulation study for different cost and data settings and obtain detection rates of relevant features and empirical distributions of the trade-off ratio. Our simulation study exposed a clear impact of the cost setting on the detection rate. In situations with large cost differences and small effect sizes, the BCR missed relevant features and preferred cheap noise features. We conclude that a trade-off between predictive performance and costs without a controlling hyperparameter can easily overemphasize very cheap noise features. While the simple benefit-cost ratio offers an easy solution to incorporate costs, it is important to be aware of its risks. Avoiding costs close to 0, rescaling large cost differences, or using a hyperparameter trade-off are ways to counteract the adverse effects exposed in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源