论文标题
卷积代数用于关系类固醇和还原
Convolution algebras for Relational Groupoids and Reduction
论文作者
论文摘要
我们介绍了关系群体和关系卷积代数的概念。我们提供了由组$ g $的组代数和给定的普通亚组$ h $引起的各种例子。我们还提供了与卷积兼容的关系群体上的HAAR度量系统的条件,我们证明了一种还原定理,该定理恢复了li lie groupoid的通常卷积。
We introduce the notions of relational groupoids and relational convolution algebras. We provide various examples arising from the group algebra of a group $G$ and a given normal subgroup $H$. We also give conditions for the existence of a Haar system of measures on a relational groupoid compatible with the convolution, and we prove a reduction theorem that recovers the usual convolution of a Lie groupoid.