论文标题
重新访问修改的贪婪算法,用于单调supsodular的最大化,并用背包约束
Revisiting Modified Greedy Algorithm for Monotone Submodular Maximization with a Knapsack Constraint
论文作者
论文摘要
单位酮的基本构型最大化具有背包约束为NP-HARD。已经设计了各种近似算法来解决此优化问题。在本文中,我们重新审视了广为人知的修改式贪婪算法。首先,我们表明该算法可以达到近似于$ 0.405 $的近似值,这显着提高了Wolsey给出的已知因子为$ 0.357 $,而Khuller等人给出了$(1-1/\ MATHRM {E})/2 \。更重要的是,我们的分析缩小了Khuller等人的证明,证明了$(1-1/\ sqrt {\ Mathrm {e}}}} \ 0.393 $的广泛提及的近似因子,以阐明在此问题上长期存在的误解。其次,我们增强了修改的贪婪算法,以推导最佳的数据依赖性上限。我们从经验上证明了使用现实世界应用的上限的紧密性。该边界使我们能够获得一个与数据相关的比率,通常高于修改后的贪婪算法的解决方案值和最佳最佳之间的$ 0.405 $。它也可以用来显着提高分支和结合等算法的效率。
Monotone submodular maximization with a knapsack constraint is NP-hard. Various approximation algorithms have been devised to address this optimization problem. In this paper, we revisit the widely known modified greedy algorithm. First, we show that this algorithm can achieve an approximation factor of $0.405$, which significantly improves the known factors of $0.357$ given by Wolsey and $(1-1/\mathrm{e})/2\approx 0.316$ given by Khuller et al. More importantly, our analysis closes a gap in Khuller et al.'s proof for the extensively mentioned approximation factor of $(1-1/\sqrt{\mathrm{e}})\approx 0.393$ in the literature to clarify a long-standing misconception on this issue. Second, we enhance the modified greedy algorithm to derive a data-dependent upper bound on the optimum. We empirically demonstrate the tightness of our upper bound with a real-world application. The bound enables us to obtain a data-dependent ratio typically much higher than $0.405$ between the solution value of the modified greedy algorithm and the optimum. It can also be used to significantly improve the efficiency of algorithms such as branch and bound.