论文标题
内部和直至分数$ g $ -laplacian的边界规律性:凸盒
Interior and up to the boundary regularity for the fractional $g$-Laplacian: the convex case
论文作者
论文摘要
我们建立了内部和到边界的Hölder规律性估计,以限制右侧右侧和$ g $ cONVEX的分数$ g- $ laplacian的dirichlet问题的弱解决方案。这些是在分数orlicz-sobolev空间中的文献中可用的第一个规律性结果。
We establish interior and up to the boundary Hölder regularity estimates for weak solutions of the Dirichlet problem for the fractional $g-$Laplacian with bounded right hand side and $g$ convex. These are the first regularity results available in the literature for integro-differential equations in the context of fractional Orlicz-Sobolev spaces.