论文标题

研究依赖温度的多体相互作用对散装电子结构的影响以及SNTE的(001)表面状态的稳健性质

Investigating the effect of temperature dependent many-body interactions on bulk electronic structures and the robust nature of (001) surface states of SnTe

论文作者

Sihi, Antik, Pandey, Sudhir K.

论文摘要

最近,SNTE由于其非平凡的拓扑性质和环保热电应用而引起了人们的关注。我们使用DFT和GW方法报告了该化合物的详细依赖性电子结构和热力学特性。发现通过使用PBESOL和$ G_0W_0 $方法的带盖的计算值与实验非常吻合,而MBJ低估了频段gap。 SN(TE)5 $ P $轨道的全面筛选库仑交互($ W $)的估计值为$ \ sim $ 1.39($ \ sim $ 1.70)EV。频率依赖性$ W $的性质表明,该化合物的相关强度相对较弱,因此可以通过全gw $多体技术来适当地研究激发的电子状态。发现等离子激发对于理解此频率$ w $的频率很重要。为了描述实验性声子模式,考虑了使用非分析项校正的远距离库仑力。温度依赖性电子 - 电子相互作用(EEI)随着温度的增加而降低了带隙。在300 K处的频段gual值为$ \ sim $ 161 mev。还估计了沿W-L- $γ$方向的电子状态的温度依赖性寿命。这项工作表明,EEI对于解释SNTE的高温转运行为很重要。我们还探索了通过镜像和时间反向对称性保护(001)表面状态的可能性。这些表面状态有望在点和线路缺陷方面具有鲁棒性。

Recently, SnTe has gained attention due to its non-trivial topological nature and eco-friendly thermoelectric applications. We report a detailed temperature dependent electronic structure and thermodynamic properties of this compound using DFT and GW methods. The calculated values of bandgaps by using PBEsol and $G_0W_0$ methods are found to be in good agreement with the experiment, whereas mBJ underestimates the bandgap. The estimated value of fully screened Coulomb interaction ($W$) for Sn (Te) 5$p$ orbitals is $\sim$1.39 ($\sim$1.70) eV. The nature of frequency dependent $W$ reveals that the correlation strength of this compound is relatively weaker and hence the excited electronic state can be properly studied by full-$GW$ many-body technique. The plasmon excitation is found to be important in understanding this frequency dependent $W$. In order to describe the experimental phonon modes, the long range Coulomb forces using nonanalytical term correction is considered. The temperature dependent electron-electron interactions (EEI) reduces the bandgaps with increasing temperature. The value of bandgap at 300 K is obtained to be $\sim$161 meV. The temperature dependent lifetimes of electronic state along W-L-$Γ$ direction are also estimated. This work suggests that EEI is important to explain the high temperature transport behaviour of SnTe. We have also explored the possibility of protecting the (001) surface states via mirror and time-reversal symmetry. These surface states are expected to be robust against the point and line defects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源