论文标题
积极学习的情境多样性
Contextual Diversity for Active Learning
论文作者
论文摘要
大型注释数据集的要求限制了对许多实际应用的深卷卷神经网络(CNN)的使用。可以通过使用主动学习(AL)技术来缓解问题,在给定的注释预算下,可以选择一部分数据子集,以在微调时产生最高准确性。最新方法的方法通常依赖于视觉多样性或预测不确定性的度量,这些度量无法有效地捕获空间环境中的变化。另一方面,现代CNN体系结构大量利用空间环境来实现高度准确的预测。由于在没有地面真实标签的情况下很难评估上下文,因此我们介绍了背景多样性的概念,该概念捕获了与空间共同存在类别相关的混淆。上下文多样性(CD)取决于关键观察,即CNN对感兴趣区域预测的概率向量通常包含来自较大的接受场的信息。利用这一观察结果,我们在两个AL框架内使用了建议的CD度量:(1)基于核心的策略和(2)基于强化的学习策略,用于主动框架选择。我们广泛的经验评估建立了在语义分割,对象检测和图像分类基准数据集上积极学习的艺术成果的状态。我们的消融研究表明,使用上下文多样性进行积极学习的明显优势。源代码和其他结果可从https://github.com/sharat29ag/cdal获得。
Requirement of large annotated datasets restrict the use of deep convolutional neural networks (CNNs) for many practical applications. The problem can be mitigated by using active learning (AL) techniques which, under a given annotation budget, allow to select a subset of data that yields maximum accuracy upon fine tuning. State of the art AL approaches typically rely on measures of visual diversity or prediction uncertainty, which are unable to effectively capture the variations in spatial context. On the other hand, modern CNN architectures make heavy use of spatial context for achieving highly accurate predictions. Since the context is difficult to evaluate in the absence of ground-truth labels, we introduce the notion of contextual diversity that captures the confusion associated with spatially co-occurring classes. Contextual Diversity (CD) hinges on a crucial observation that the probability vector predicted by a CNN for a region of interest typically contains information from a larger receptive field. Exploiting this observation, we use the proposed CD measure within two AL frameworks: (1) a core-set based strategy and (2) a reinforcement learning based policy, for active frame selection. Our extensive empirical evaluation establish state of the art results for active learning on benchmark datasets of Semantic Segmentation, Object Detection and Image Classification. Our ablation studies show clear advantages of using contextual diversity for active learning. The source code and additional results are available at https://github.com/sharat29ag/CDAL.