论文标题
在饱和集的拓扑熵上
On the topological entropy of saturated sets for amenable group actions
论文作者
论文摘要
令$(x,ρ,g)$为$ g-$行动拓扑系统,其中$ g $是可计数无限的离散式amenable组和紧凑型公制空间的$ x $。我们证明了具有规格和均匀分离特性的系统的饱和集的拓扑熵的变异原理。作为应用程序,我们计算水平集和不规则集的拓扑熵。
Let $(X,ρ,G)$ be a $G-$action topological system, where $G$ is a countable infinite discrete amenable group and $X$ a compact metric space. We prove a variational principle for topological entropy of saturated sets for systems which have specification and uniform separation properties. As an application, we compute the topological entropy of level sets and irregular sets.