论文标题

分级$ r $ -submodules

Graded $r$-Submodules

论文作者

Alraqad, Tariq, Saber, Hicham, Abu-Dawwas, Rashid

论文摘要

让$ g $是一个具有身份$ e $的集团和$ r $ a $ g $ g $ g $ raded的戒指,非零统一$ 1 $。在本文中,我们介绍了分级$ r $ submodules和分级的特殊$ r $ $ submodules的概念,这是对分级r-iDeals概念的概括。对于非零$ g $ - $ r $ -module $ m $,适当的分级$ r $ -r $ -subModule $ k $ $ m $ $ m $的分级为$ r $ r $ -submodule(resp。,resp。划分的$ r $ -submodule,n时何时在h(r)$ y in h(r)$ y in h(r)中, $ ann_ {m}(a)= \ {0 \} $(wesp。,$ ann_ {r}(x)= \ {0 \} $),然后$ x \ in k $(wesp。,$ a \ in(k:k:_ _ {r} m)$)。我们研究了分级$ r $ submodules和分级的特殊$ r $ -submodules的各种属性,我们给出了这两个新等级模块的几个插图示例。

Let $G$ be a group with identity $e$ and $R$ a commutative $G$-graded ring with a nonzero unity $1$. In this article, we introduce the concepts of graded $r$-submodules and graded special $r$-submodules, which are generalizations for the notion of graded r-ideals. For a nonzero $G$-graded $R$-module $M$, a proper graded $R$-submodule $K$ of $M$ is said to be graded $r$-submodule (resp., graded special $r$-submodule) if whenever $a\in h(R)$ and $x\in h(M)$ such that $ax\in K$ with $Ann_{M}(a)=\{0\}$ (resp., $Ann_{R}(x)=\{0\}$), then $x\in K$ (resp., $a\in (K:_{R}M)$). We study various properties of graded $r$-submodules and graded special $r$-submodules, and we give several illustration examples of these two new classes of graded modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源