论文标题
Hölder-coeffliffife的几乎最小成分的规律性
Regularity of Almost-Minimizers of Hölder-Coefficient Surface Energies
论文作者
论文摘要
我们研究了作用于作用于表面正常方向的单位的系数的Hölder连续矩阵所定义的各向异性表面能的几乎最小化。在高原问题的这种概括中,我们证明几乎最小的二聚体在常规点上不断差异,并给出了奇异集的大小的尺寸估计值。我们在本地有限周围的框架中工作,我们的证明遵循了过多的定期参数。
We study almost-minimizers of anisotropic surface energies defined by a Hölder continuous matrix of coefficients acting on the unit normal direction to the surface. In this generalization of the Plateau problem, we prove almost-minimizers are locally Hölder continuously differentiable at regular points and give dimension estimates for the size of the singular set. We work in the framework of sets of locally finite perimeter and our proof follows an excess-decay type argument.