论文标题

MR图像重建的生成密度先验的同型梯度

Homotopic Gradients of Generative Density Priors for MR Image Reconstruction

论文作者

Quan, Cong, Zhou, Jinjie, Zhu, Yuanzheng, Chen, Yang, Wang, Shanshan, Liang, Dong, Liu, Qiegen

论文摘要

深度学习,尤其是生成模型,已经显示出巨大的潜力,可以通过降低的测量来显着加快图像重建。在这项工作中,提出了磁共振成像(MRI)重建,而不是通过利用脱氧分子分数匹配的现有生成模型,而是通过利用脱氧分子的分数匹配来优化。更确切地说,要解决生成密度的低维歧管和低数据密度区域问题,我们估计了高维空间中的目标梯度。我们通过形成高维张量作为训练阶段的网络输入来训练更强大的噪声条件得分网络。在嵌入空间中还注入了更多人造噪声。在重建阶段,采用了同义方法来追求之前的密度,例如提高重建性能。实验结果暗示了HGGDP在高重建精度方面的显着性能;只有10%的K空间数据仍然可以像标准MRI重建一样有效地生成高质量图像,并具有完全采样的数据。

Deep learning, particularly the generative model, has demonstrated tremendous potential to significantly speed up image reconstruction with reduced measurements recently. Rather than the existing generative models that often optimize the density priors, in this work, by taking advantage of the denoising score matching, homotopic gradients of generative density priors (HGGDP) are proposed for magnetic resonance imaging (MRI) reconstruction. More precisely, to tackle the low-dimensional manifold and low data density region issues in generative density prior, we estimate the target gradients in higher-dimensional space. We train a more powerful noise conditional score network by forming high-dimensional tensor as the network input at the training phase. More artificial noise is also injected in the embedding space. At the reconstruction stage, a homotopy method is employed to pursue the density prior, such as to boost the reconstruction performance. Experiment results imply the remarkable performance of HGGDP in terms of high reconstruction accuracy; only 10% of the k-space data can still generate images of high quality as effectively as standard MRI reconstruction with the fully sampled data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源