论文标题

尖端:点云的增强

PointMixup: Augmentation for Point Clouds

论文作者

Chen, Yunlu, Hu, Vincent Tao, Gavves, Efstratios, Mensink, Thomas, Mettes, Pascal, Yang, Pengwan, Snoek, Cees G. M.

论文摘要

本文通过示例之间的插值引入了点云的数据增强。通过插值扩大数据已显示为图像域中的一种简单有效的方法。但是,这种混合不能直接传输到点云,因为我们在两个不同对象的点之间没有一对一的对应关系。在本文中,我们将点云之间的数据增强定义为最短的路径线性插值。为此,我们介绍了端子插值方法,该方法通过最佳分配两个点云之间的路径函数来生成新示例。我们证明我们的端子找到了两个点云之间的最短路径,并且插值是分配不变和线性的。通过定义插值,尖头允许将基于强插值的正规化器(例如混合和歧管混合)引入点云域。在实验上,我们显示了尖端云分类的潜力,尤其是当示例稀缺时,以及对噪声和几何变换的鲁棒性提高到点。 PointMixup的代码和实验细节可公开可用。

This paper introduces data augmentation for point clouds by interpolation between examples. Data augmentation by interpolation has shown to be a simple and effective approach in the image domain. Such a mixup is however not directly transferable to point clouds, as we do not have a one-to-one correspondence between the points of two different objects. In this paper, we define data augmentation between point clouds as a shortest path linear interpolation. To that end, we introduce PointMixup, an interpolation method that generates new examples through an optimal assignment of the path function between two point clouds. We prove that our PointMixup finds the shortest path between two point clouds and that the interpolation is assignment invariant and linear. With the definition of interpolation, PointMixup allows to introduce strong interpolation-based regularizers such as mixup and manifold mixup to the point cloud domain. Experimentally, we show the potential of PointMixup for point cloud classification, especially when examples are scarce, as well as increased robustness to noise and geometric transformations to points. The code for PointMixup and the experimental details are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源