论文标题
用于局部不确定性量化动态系统的数据信息分解
Data-Informed Decomposition for Localized Uncertainty Quantification of Dynamical Systems
论文作者
论文摘要
由于物质异质性,操作条件和复杂的环境负荷,工业动力系统通常会表现出多尺度的响应。在这样的问题中,系统动力学的最小长度尺度控制有效解决嵌入式物理所需的数值分辨率。但是,实际上,仅在系统的限制区域中需要高数值分辨率,在该系统的限制区域中,在该系统中显示出快速动态或局部材料可变性,而在系统的其余大多数系统中,更粗的离散化可能就足够了。为此,具有统一时空分辨率的统一计算方案在不确定性量化上可能是非常要求的。将复杂的动态系统划分为较小的易于解决的局部动力学和物料可变性的问题,可以降低整体计算成本。但是,确定高分辨率和密集不确定性定量的关注区域可能取决于问题。可以根据解决方案的本地化特征,用户兴趣和随机材料属性的相关长度来指定目标区域。对于不明显区域的问题,贝叶斯推论可以提供可行的解决方案。在这项工作中,我们使用贝叶斯框架使用测量和系统响应来更新有关局部关注区域的先验知识。为了解决贝叶斯推论的计算成本,我们为前向模型构建了高斯过程替代。一旦确定了局部关注区域,我们就会使用多项式混乱扩展来传播定位不确定性。我们通过关于三维弹性动力问题的数值实验来证明我们的框架。
Industrial dynamical systems often exhibit multi-scale response due to material heterogeneities, operation conditions and complex environmental loadings. In such problems, it is the case that the smallest length-scale of the systems dynamics controls the numerical resolution required to effectively resolve the embedded physics. In practice however, high numerical resolutions is only required in a confined region of the system where fast dynamics or localized material variability are exhibited, whereas a coarser discretization can be sufficient in the rest majority of the system. To this end, a unified computational scheme with uniform spatio-temporal resolutions for uncertainty quantification can be very computationally demanding. Partitioning the complex dynamical system into smaller easier-to-solve problems based of the localized dynamics and material variability can reduce the overall computational cost. However, identifying the region of interest for high-resolution and intensive uncertainty quantification can be a problem dependent. The region of interest can be specified based on the localization features of the solution, user interest, and correlation length of the random material properties. For problems where a region of interest is not evident, Bayesian inference can provide a feasible solution. In this work, we employ a Bayesian framework to update our prior knowledge on the localized region of interest using measurements and system response. To address the computational cost of the Bayesian inference, we construct a Gaussian process surrogate for the forward model. Once, the localized region of interest is identified, we use polynomial chaos expansion to propagate the localization uncertainty. We demonstrate our framework through numerical experiments on a three-dimensional elastodynamic problem.