论文标题

关于反应性合成中自动机的功能

On the Power of Automata Minimization in Reactive Synthesis

论文作者

Zhu, Shufang, Tabajara, Lucas M., Pu, Geguang, Vardi, Moshe Y.

论文摘要

时间逻辑通常用于描述AI应用程序中的时间属性。这样做的最受欢迎的语言是线性时间逻辑(LTL)。最近,已在几种情况下研究了有限痕迹LTLF的LTL。为了理解LTLF,公式通常被编译为确定性有限自动机(DFA),作为中间语义表示。此外,由于DFA具有规范表示,因此可以将有效的最小化算法应用于最大程度地降低DFA大小,从而有助于加快随后的计算。在这里,我们对两种经典最小化算法进行了详尽的研究,即Hopcroft和Brzozowski算法。更具体地说,我们展示了如何将这些算法应用于半符号(显式状态,符号过渡函数)自动机表示。然后,我们在LTLF合成框架的上下文中比较了两种算法,从LTLF公式开始。尽管对随机生成的自动机开始进行比较两种算法的研究得出的结论是,算法都没有主导,但我们的结果表明,从LTLF公式开始,Hopcroft的算法是反应性合成背景下的最佳选择。更深入的分析解释了为什么Brzozowski算法的应该优势在实践中没有实现。

Temporal logic is often used to describe temporal properties in AI applications. The most popular language for doing so is Linear Temporal Logic (LTL). Recently, LTL on finite traces, LTLf, has been investigated in several contexts. In order to reason about LTLf, formulas are typically compiled into deterministic finite automata (DFA), as the intermediate semantic representation. Moreover, due to the fact that DFAs have canonical representation, efficient minimization algorithms can be applied to maximally reduce DFA size, helping to speed up subsequent computations. Here, we present a thorough investigation on two classical minimization algorithms, namely, the Hopcroft and Brzozowski algorithms. More specifically, we show how to apply these algorithms to semi-symbolic (explicit states, symbolic transition functions) automata representation. We then compare the two algorithms in the context of an LTLf-synthesis framework, starting from LTLf formulas. While earlier studies on comparing the two algorithms starting from randomly-generated automata concluded that neither algorithm dominates, our results suggest that starting from LTLf formulas, Hopcroft's algorithm is the best choice in the context of reactive synthesis. Deeper analysis explains why the supposed advantage of Brzozowski's algorithm does not materialize in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源