论文标题
莱文的猜想是长度为九的方程式
Levin's conjecture for an equation of length nine
论文作者
论文摘要
已经建立了莱文的猜想,以使长度长达七个长度的组方程保持真实。最近,对于某些长度为8和九的组方程来说,Levin的猜想也是正确的(Modulo例外情况)。在本文中,我们考虑了长度为九的组方程,并表明levin的猜想对于此方程模拟某些例外情况是正确的。
Levin's conjecture has been established to hold true for group equations of length up to seven. Recently, it is shown that Levin's conjecture is also true (modulo exceptional cases) for some group equations of length eight and nine. In this paper we consider a group equation of length nine and show that the Levin's conjecture is true for this equation modulo some exceptional cases.