论文标题

有条件居中的时刻和紧凑型操作员在$ l^p $空间上的急剧估算

Sharp estimates for conditionally centred moments and for compact operators on $L^p$ spaces

论文作者

Shargorodsky, Eugene, Sharia, Teo

论文摘要

令$(ω,\ Mathcal {f},\ Mathbf {p})$为概率空间,$ξ$是$(ω,\ Mathcal {f}上的随机变量$ \ mathbf {e}^\ mathcal {g} = \ mathbf {e}(\ cdot | \ mathcal {g})$是相应的条件期望运算符。我们在$ξ-\ Mathbf {e}^\ Mathcal {g}ξ$的矩时,以$ξ$的矩矩为单位上获得了清晰的估计。这使我们可以在$ l^p([0,1])$,$ 1 <p <\ infty $的有限紧凑型近似属性中找到最佳常数。

Let $(Ω, \mathcal{F}, \mathbf{P})$ be a probability space, $ξ$ be a random variable on $(Ω, \mathcal{F}, \mathbf{P})$, $\mathcal{G}$ be a sub-$σ$-algebra of $\mathcal{F}$, and let $\mathbf{E}^\mathcal{G} = \mathbf{ E}(\cdot | \mathcal{G})$ be the corresponding conditional expectation operator. We obtain sharp estimates for the moments of $ξ- \mathbf{E}^\mathcal{G}ξ$ in terms of the moments of $ξ$. This allows us to find the optimal constant in the bounded compact approximation property of $L^p([0, 1])$, $1 < p < \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源