论文标题

海洋:具有上下文适应的组成任务的在线任务推论

OCEAN: Online Task Inference for Compositional Tasks with Context Adaptation

论文作者

Ren, Hongyu, Zhu, Yuke, Leskovec, Jure, Anandkumar, Anima, Garg, Animesh

论文摘要

现实世界任务通常表现出包含一系列简单子任务的组成结构。例如,打开门需要到达,抓握,旋转和拉动门旋钮。这种组成任务要求代理在相应地策划全球行为的同时,对手头上的子任务进行推理。这可以作为在线任务推理问题中施放,其中以上下文变量为代表的当前任务标识是根据代理商过去的概率推断的过去经验来估计的。先前的方法已采用简单的潜在分布,例如高斯,为整个任务建模单个上下文。但是,这种配方缺乏捕获子任务的组成和过渡的表现力。我们提出了一个变异推理框架海洋,以执行组成任务的在线任务推理。海洋模型在联合潜在空间中的全球和局部环境变量,其中全局变量代表任务所需的子任务的混合物,而局部变量捕获了子任务之间的过渡。我们的框架基于对任务结构的先验知识支持灵活的潜在分布,并且可以接受无监督的方式进行培训。实验结果表明,海洋通过顺序上下文适应提供了更有效的任务推论,从而导致了复杂的多阶段任务的性能。

Real-world tasks often exhibit a compositional structure that contains a sequence of simpler sub-tasks. For instance, opening a door requires reaching, grasping, rotating, and pulling the door knob. Such compositional tasks require an agent to reason about the sub-task at hand while orchestrating global behavior accordingly. This can be cast as an online task inference problem, where the current task identity, represented by a context variable, is estimated from the agent's past experiences with probabilistic inference. Previous approaches have employed simple latent distributions, e.g., Gaussian, to model a single context for the entire task. However, this formulation lacks the expressiveness to capture the composition and transition of the sub-tasks. We propose a variational inference framework OCEAN to perform online task inference for compositional tasks. OCEAN models global and local context variables in a joint latent space, where the global variables represent a mixture of sub-tasks required for the task, while the local variables capture the transitions between the sub-tasks. Our framework supports flexible latent distributions based on prior knowledge of the task structure and can be trained in an unsupervised manner. Experimental results show that OCEAN provides more effective task inference with sequential context adaptation and thus leads to a performance boost on complex, multi-stage tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源