论文标题
使用可穿戴的脑电图头带了解颜色感知的大脑动力学
Understanding Brain Dynamics for Color Perception using Wearable EEG headband
论文作者
论文摘要
对颜色的感知是人脑的重要认知特征。影响人眼的各种颜色可以触发大脑活动的变化,该颜色可以使用脑电图(EEG)捕获。在这项工作中,我们设计了一个多类分类模型,以从RAW EEG信号的功能中检测原色。与以前的研究相反,我们的方法采用光谱功率功能,统计特征以及从连续的Morlet小波变换而不是RAW EEG获得的信号谱带功率的相关特征,用于分类任务。我们已经应用了降低降低技术,例如正向特征选择和堆叠自动编码器,以降低数据的尺寸最终提高了模型的效率。我们提出的使用正向选择和随机森林分类器的方法为受试者内分类提供了80.6 \%的最佳总体精度。我们的方法显示了使用颜色提示(例如控制有限运动能力的人的原色)来开发认知任务的技术的有望。
The perception of color is an important cognitive feature of the human brain. The variety of colors that impinge upon the human eye can trigger changes in brain activity which can be captured using electroencephalography (EEG). In this work, we have designed a multiclass classification model to detect the primary colors from the features of raw EEG signals. In contrast to previous research, our method employs spectral power features, statistical features as well as correlation features from the signal band power obtained from continuous Morlet wavelet transform instead of raw EEG, for the classification task. We have applied dimensionality reduction techniques such as Forward Feature Selection and Stacked Autoencoders to reduce the dimension of data eventually increasing the model's efficiency. Our proposed methodology using Forward Selection and Random Forest Classifier gave the best overall accuracy of 80.6\% for intra-subject classification. Our approach shows promise in developing techniques for cognitive tasks using color cues such as controlling Internet of Thing (IoT) devices by looking at primary colors for individuals with restricted motor abilities.