论文标题
推荐系统的解开项目表示形式
Disentangled Item Representation for Recommender Systems
论文作者
论文摘要
建议系统中的项目表示形式有望揭示项目的属性。协作推荐方法通常代表一个单个潜在向量。如今,电子商业平台为物品(例如,服装的类别,价格和样式)提供了各种属性信息。近年来,利用这些属性信息来获得更好的项目表示。一些研究使用给定的属性信息作为附带信息,该信息与该项目潜在向量串联以增强表示形式。但是,混合项目表示未能充分利用丰富的属性信息或在建议系统中提供说明。为此,我们为推荐系统提出了一个细粒度的分离项目表示(DIR),其中这些项目表示为几个分离的属性向量而不是单个潜在向量。通过这种方式,项目在属性级别表示,可以在建议中提供精细的项目信息。我们介绍了一种学习策略,Learndir,可以将相应属性向量分配给项目。我们展示了如何将DIR应用于两个典型模型,即矩阵分解(MF)和复发性神经网络(RNN)。两个现实世界数据集的实验结果表明,在DIR框架下开发的模型是有效而有效的。即使使用较少的参数,提出的模型也可以胜过最先进的方法,尤其是在寒冷的情况下。此外,我们进行可视化以表明我们的主张可以为现实世界应用程序中的用户提供解释。
Item representations in recommendation systems are expected to reveal the properties of items. Collaborative recommender methods usually represent an item as one single latent vector. Nowadays the e-commercial platforms provide various kinds of attribute information for items (e.g., category, price and style of clothing). Utilizing these attribute information for better item representations is popular in recent years. Some studies use the given attribute information as side information, which is concatenated with the item latent vector to augment representations. However, the mixed item representations fail to fully exploit the rich attribute information or provide explanation in recommender systems. To this end, we propose a fine-grained Disentangled Item Representation (DIR) for recommender systems in this paper, where the items are represented as several separated attribute vectors instead of a single latent vector. In this way, the items are represented at the attribute level, which can provide fine-grained information of items in recommendation. We introduce a learning strategy, LearnDIR, which can allocate the corresponding attribute vectors to items. We show how DIR can be applied to two typical models, Matrix Factorization (MF) and Recurrent Neural Network (RNN). Experimental results on two real-world datasets show that the models developed under the framework of DIR are effective and efficient. Even using fewer parameters, the proposed model can outperform the state-of-the-art methods, especially in the cold-start situation. In addition, we make visualizations to show that our proposition can provide explanation for users in real-world applications.