论文标题

使用深神经网络对文本分类的主动学习调查

A Survey of Active Learning for Text Classification using Deep Neural Networks

论文作者

Schröder, Christopher, Niekler, Andreas

论文摘要

近年来,自然语言处理(NLP)和神经网络(NNS)都发生了重大变化。为了积极学习(AL)目的,NNS尽管目前的流行程度很少。通过使用AL的卓越文本分类性能,我们可以使用相同数量的数据来提高模型的性能,或者减少数据,从而在保持相同的性能的同时所需的注释工作。我们审查了使用深神经网络(DNN)进行文本分类的AL,并详细介绍了两种主要原因,这些原因用于阻碍采用:(a)NNS无法提供可靠的不确定性估计值,最常用的查询策略依赖于这些估计,以及(b)对小数据培训DNN的挑战。为了调查前者,我们构建了查询策略的分类法,该分类法将基于数据的,基于模型和基于预测的实例选择区分,并在最近的研究中调查了这些类别的普遍性。此外,我们回顾了在(d)NN的上下文中基于NN的NLP等最新基于NN的进展,例如(d)NN,调查Al,文本分类和DNN的交集的当前最新技术,并将NLP的最新进展与Al联系起来。最后,我们分析了AL的最新工作,用于文本分类,将各自的查询策略与分类法联系起来,并概述了共同点和缺点。结果,我们重点介绍了当前研究的差距,并提出了开放的研究问题。

Natural language processing (NLP) and neural networks (NNs) have both undergone significant changes in recent years. For active learning (AL) purposes, NNs are, however, less commonly used -- despite their current popularity. By using the superior text classification performance of NNs for AL, we can either increase a model's performance using the same amount of data or reduce the data and therefore the required annotation efforts while keeping the same performance. We review AL for text classification using deep neural networks (DNNs) and elaborate on two main causes which used to hinder the adoption: (a) the inability of NNs to provide reliable uncertainty estimates, on which the most commonly used query strategies rely, and (b) the challenge of training DNNs on small data. To investigate the former, we construct a taxonomy of query strategies, which distinguishes between data-based, model-based, and prediction-based instance selection, and investigate the prevalence of these classes in recent research. Moreover, we review recent NN-based advances in NLP like word embeddings or language models in the context of (D)NNs, survey the current state-of-the-art at the intersection of AL, text classification, and DNNs and relate recent advances in NLP to AL. Finally, we analyze recent work in AL for text classification, connect the respective query strategies to the taxonomy, and outline commonalities and shortcomings. As a result, we highlight gaps in current research and present open research questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源