论文标题

修饰的高斯重力中的静态虫洞溶液和noether对称性

Static Wormhole Solutions and Noether Symmetry in Modified Gauss-Bonnet Gravity

论文作者

Sharif, M., Nawazish, Iqra, Hussain, Shahid

论文摘要

在本文中,我们通过修改后的高斯 - 骨网$ f(\ Mathcal {g})$重力理论(其中$ \ Mathcal {g} $代表Gauss-Bonnet术语)中的Noether对称技术分析静态遍历虫洞。我们假设各向同性物质配置和球形对称度量。我们构建了三个$ f(\ Mathcal {g})$模型,即线性,二次和指数形式,并检查这些模型的一致性。虫洞溶液的可遍历性质是通过有效应激量张量的无效限制讨论的,而通过各向同性液的标准能量界限进行了身体行为。我们还讨论了这些虫洞在虫洞喉咙内的稳定性,并得出结论存在于二次的螺旋孔以及指数$ f(\ Mathcal {g})$模型的可遍历和物理稳定的虫洞。

In this paper, we analyze static traversable wormholes via Noether symmetry technique in modified Gauss-Bonnet $f(\mathcal{G})$ theory of gravity (where $\mathcal{G}$ represents Gauss-Bonnet term). We assume isotropic matter configuration and spherically symmetric metric. We construct three $f(\mathcal{G})$ models, i.e, linear, quadratic and exponential forms and examine the consistency of these models. The traversable nature of wormhole solutions is discussed via null energy bound of the effective stress-energy tensor while physical behavior is studied through standard energy bounds of isotropic fluid. We also discuss the stability of these wormholes inside the wormhole throat and conclude the presence of traversable and physically stable wormholes for quadratic as well as exponential $f(\mathcal{G})$ models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源