论文标题

近似HyperGraph顶点盖和广义Tuza的猜想

Approximate Hypergraph Vertex Cover and generalized Tuza's conjecture

论文作者

Guruswami, Venkatesan, Sandeep, Sai

论文摘要

Tuza的一个著名猜想指出,覆盖图中所有三角形所需的最小边数最多是最大数量的边缘 - 界线三角形数量。这个猜想是在Aharoni和Zerbib更广泛的环境中,他们提出了该猜想的超图版本,还研究了其隐含的分数版本。我们建立了aharoni-Zerbib猜想的分数版本,最多是较低的术语。具体来说,我们给出了一个因子$ t/2+ o(\ sqrt {t \ log t})$近似值,基于LP圆形,用于HypergraphTurán问题(AHTP)的算法版本。 AHTP的目的是选择最小的(T-1)$大小的集合的输入$ t $均匀均匀的超图的顶点,以使每个HyperEdge都包含这些子集之一。 Aharoni和Zerbib还提出了Tuza的猜想及其超图版本是否可以从顶点覆盖率之间的非平凡二元性差距以及排除某些子毛毛图的超图上的匹配中,例如,例如在琐事和边缘的发生率中不可能发生的“帐篷”结构。我们通过展示无帐篷的超图和实际上的$ \ Mathcal {f} $ - 对于任何有限的家庭$ \ MATHCAL {F} $的免费超图提供了强烈的负面答案。 在上述研究中引起的算法问题可以用作简单超图上的顶点覆盖的实例,而简单的超图在其高音上最多可以成对共享一个顶点。我们证明,对于简单的$ t $均匀的超图,很难改进顶点盖的琐事$ t $近似。但是,对于简单$ n $ vertex HyperGraphs上的设定盖,贪婪的算法可实现一个因子$(\ ln n)/2 $,大于一般超级格言的最佳$ \ ln n $因子。

A famous conjecture of Tuza states that the minimum number of edges needed to cover all the triangles in a graph is at most twice the maximum number of edge-disjoint triangles. This conjecture was couched in a broader setting by Aharoni and Zerbib who proposed a hypergraph version of this conjecture, and also studied its implied fractional versions. We establish the fractional version of the Aharoni-Zerbib conjecture up to lower order terms. Specifically, we give a factor $t/2+ O(\sqrt{t \log t})$ approximation based on LP rounding for an algorithmic version of the hypergraph Turán problem (AHTP). The objective in AHTP is to pick the smallest collection of $(t-1)$-sized subsets of vertices of an input $t$-uniform hypergraph such that every hyperedge contains one of these subsets. Aharoni and Zerbib also posed whether Tuza's conjecture and its hypergraph versions could follow from non-trivial duality gaps between vertex covers and matchings on hypergraphs that exclude certain sub-hypergraphs, for instance, a "tent" structure that cannot occur in the incidence of triangles and edges. We give a strong negative answer to this question, by exhibiting tent-free hypergraphs, and indeed $\mathcal{F}$-free hypergraphs for any finite family $\mathcal{F}$ of excluded sub-hypergraphs, whose vertex covers must include almost all the vertices. The algorithmic questions arising in the above study can be phrased as instances of vertex cover on simple hypergraphs, whose hyperedges can pairwise share at most one vertex. We prove that the trivial factor $t$ approximation for vertex cover is hard to improve for simple $t$-uniform hypergraphs. However, for set cover on simple $n$-vertex hypergraphs, the greedy algorithm achieves a factor $(\ln n)/2$, better than the optimal $\ln n$ factor for general hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源