论文标题

关于伯恩斯坦 - 萨托品种的驯服分隔和安排的注释

A Note on Bernstein-Sato Varieties for Tame Divisors and Arrangements

论文作者

Bath, Daniel

论文摘要

对于强烈的Euler均匀,启用启示性和驯服的分析细菌,我们考虑了与我们的细菌任意分解相关的多变量伯恩斯坦 - 苏制理想的一般类型。我们显示这些理想的零基因座是纯粹的编辑,而与不同因素化相关的零基因座与对角性特性相关。另外,如果除法是超平面的排列,我们表明将与线性形式分解为分解的伯恩斯坦 - 撒托理想是主要的。作为应用程序,我们独立验证并改善了Maisonobe关于标准的伯恩斯坦 - 撒托(Bernstein-Sato)理想的估计值,以减少通用布置:我们计算了将伯恩斯坦 - 萨托(Bernstein-Sato)分解为线性形式的理想选择,并且我们计算了其其他因素化的零基因座。

For strongly Euler-homogeneous, Saito-holonomic, and tame analytic germs we consider general types of multivariate Bernstein-Sato ideals associated to arbitrary factorizations of our germ. We show the zero loci of these ideals are purely codimension one and the zero loci associated to different factorizations are related by a diagonal property. If, additionally, the divisor is a hyperplane arrangement, we show the Bernstein-Sato ideals attached to a factorization into linear forms are principal. As an application, we independently verify and improve an estimate of Maisonobe's regarding standard Bernstein-Sato ideals for reduced, generic arrangements: we compute the Bernstein-Sato ideal for a factorization into linear forms and we compute its zero locus for other factorizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源