论文标题

Vizcummender:基于内容建议的可视化存储库中基于文本的相似性

VizCommender: Computing Text-Based Similarity in Visualization Repositories for Content-Based Recommendations

论文作者

Oppermann, Michael, Kincaid, Robert, Munzner, Tamara

论文摘要

基于云的可视化服务使观众比以往任何时候都可以访问视觉分析。 Tableau之类的系统已开始以交互式可视化工作簿的形式积累越来越大的分析知识存储库。当共享时,这些集合可以形成视觉分析知识库。但是,随着收集的规模增加,找到相关信息的困难也是如此。基于内容的建议(CBR)系统可以帮助分析师查找和管理与其利益相关的工作簿。为了实现这一目标,我们专注于代表可视化主题的基于文本的内容,而不是视觉编码和样式。我们讨论了基于可视化规范创建CBR相关的挑战,并更具体地探索如何使用Tableau Workbook规范作为内容数据来源实施所需的相关性措施。我们还展示了可以从这些可视化规范中提取哪些信息,以及如何使用各种自然语言处理技术来计算工作簿之间的相似性,以衡量相关性。我们报告了一项众包用户研究,以确定我们的相似性是否衡量模仿人类的判断。最后,我们选择潜在的Dirichlet分配(LDA)作为特定模型,并在概念验证推荐工具中实例化,以演示我们相似性度量的基本功能。

Cloud-based visualization services have made visual analytics accessible to a much wider audience than ever before. Systems such as Tableau have started to amass increasingly large repositories of analytical knowledge in the form of interactive visualization workbooks. When shared, these collections can form a visual analytic knowledge base. However, as the size of a collection increases, so does the difficulty in finding relevant information. Content-based recommendation (CBR) systems could help analysts in finding and managing workbooks relevant to their interests. Toward this goal, we focus on text-based content that is representative of the subject matter of visualizations rather than the visual encodings and style. We discuss the challenges associated with creating a CBR based on visualization specifications and explore more concretely how to implement the relevance measures required using Tableau workbook specifications as the source of content data. We also demonstrate what information can be extracted from these visualization specifications and how various natural language processing techniques can be used to compute similarity between workbooks as one way to measure relevance. We report on a crowd-sourced user study to determine if our similarity measure mimics human judgement. Finally, we choose latent Dirichlet allocation (LDA) as a specific model and instantiate it in a proof-of-concept recommender tool to demonstrate the basic function of our similarity measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源