论文标题

嵌套logit模型中的学习结构

Learning Structure in Nested Logit Models

论文作者

Aboutaleb, Youssef M., Ben-Akiva, Moshe, Jaillet, Patrick

论文摘要

本文介绍了一种嵌套logit结构发现的新数据驱动方法。嵌套logit模型允许通过嵌套结构的规范在离散选择方案中不同替代方案的效用规范的误差项之间建模正相关。当前的嵌套logit模型估计实践需要建模者对嵌套结构的先验规范。在此工作中,我们优化了与理性效用最大化一致的嵌套logit模型的所有可能规格。我们从数据中学习最佳嵌套结构的问题作为混合整数非线性编程(MINLP)优化问题,并使用线性外近似算法的变体来解决它。我们利用了问题的树结构,并利用整数优化的最新进展来为我们引入的优化问题带来实际的障碍。我们证明了算法在蒙特卡洛实验中从合成数据中正确恢复真实嵌套结构的能力。在美国马萨诸塞州对运输方式的陈述偏好调查的经验例证中,我们使用我们的算法来获得一棵最佳的筑巢树,代表了不同旅行模式选择的未观察到的效果之间的相关性。我们将实施方式作为用朱莉娅编程语言编写的可自定义和开源代码库。

This paper introduces a new data-driven methodology for nested logit structure discovery. Nested logit models allow the modeling of positive correlations between the error terms of the utility specifications of the different alternatives in a discrete choice scenario through the specification of a nesting structure. Current nested logit model estimation practices require an a priori specification of a nesting structure by the modeler. In this we work we optimize over all possible specifications of the nested logit model that are consistent with rational utility maximization. We formulate the problem of learning an optimal nesting structure from the data as a mixed integer nonlinear programming (MINLP) optimization problem and solve it using a variant of the linear outer approximation algorithm. We exploit the tree structure of the problem and utilize the latest advances in integer optimization to bring practical tractability to the optimization problem we introduce. We demonstrate the ability of our algorithm to correctly recover the true nesting structure from synthetic data in a Monte Carlo experiment. In an empirical illustration using a stated preference survey on modes of transportation in the U.S. state of Massachusetts, we use our algorithm to obtain an optimal nesting tree representing the correlations between the unobserved effects of the different travel mode choices. We provide our implementation as a customizable and open-source code base written in the Julia programming language.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源