论文标题

智能反射表面辅助误差下行链路:通道估计和渐近分析

Intelligent Reflecting Surface Assisted MISO Downlink: Channel Estimation and Asymptotic Analysis

论文作者

Al-Nahhas, Bayan, Nadeem, Qurrat-Ul-Ain, Chaaban, Anas

论文摘要

这项工作使研究不完美的CSI下的多用户智能反射表面(IRS)辅助 - 辅助单输出(MISO)下行链路系统的渐近性能的初步贡献。我们首先将现有的最小二乘(LS)ON/OFF ON/OFF通道估计协议扩展到多用户系统,在该系统中,我们得出了所有IRS辅助通道的最小平方误差(MMSE)估计值。我们还考虑了一个低复杂性直接估计(DE)方案,其中BS在单个子相中获得了整个通道的MMSE估计值。在这两种方案下,BS在大型系统限制中研究了IRS设计时实现最大比率传输(MRT)预编码,我们得出了信噪比与噪声比率(SINR)和总和率的确定性等效物。仅取决于通道统计的衍生渐近表达式表明,在雷利褪色的IRS到使用者通道下,IRS相移值在改善总和率中并不重要,但IRS仍然提供阵列增益。仿真结果证实了派生的确定性等效物的准确性,并表明在雷利褪色下,IRS的增益在噪声有限的场景中更为显着。我们还得出结论,在考虑大型系统时,整个渠道的DE会产生更好的性能。

This work makes the preliminary contribution of studying the asymptotic performance of a multi-user intelligent reflecting surface (IRS) assisted-multiple-input single-output (MISO) downlink system under imperfect CSI. We first extend the existing least squares (LS) ON/OFF channel estimation protocol to a multi-user system, where we derive minimum mean squared error (MMSE) estimates of all IRS-assisted channels over multiple sub-phases. We also consider a low-complexity direct estimation (DE) scheme, where the BS obtains the MMSE estimate of the overall channel in a single sub-phase. Under both protocols, the BS implements maximum ratio transmission (MRT) precoding while the IRS design is studied in the large system limit, where we derive deterministic equivalents of the signal-to-interference-plus-noise ratio (SINR) and the sum-rate. The derived asymptotic expressions, which depend only on channel statistics, reveal that under Rayleigh fading IRS-to-users channels, the IRS phase-shift values do not play a significant role in improving the sum-rate but the IRS still provides an array gain. Simulation results confirm the accuracy of the derived deterministic equivalents and show that under Rayleigh fading, the IRS gains are more significant in noise-limited scenarios. We also conclude that the DE of the overall channel yields better performance when considering large systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源