论文标题
关于任意特征的均匀捆的崩溃
On the collapsing of homogeneous bundles in arbitrary characteristic
论文作者
论文摘要
我们研究了均质捆绑$ g \ times_p v $ thim bonk y flag品种$ g/p $的等效图的几何形状到$ g $的表示,称为折叠地图。 KEMPF表明,只要捆绑包是完全还原的,折叠映射的图像$ g \ cdot v $具有特征性零的理性近视。我们将此结果扩展到积极的特征,并表明,对于类似的捆绑,饱和$ g \ cdot v $如果其坐标环具有良好的过滤,则强烈的$ f $是$ f $。我们进一步表明,在这种情况下,仅限于舒伯特品种的均匀捆绑包的崩溃图的图像是$ f $ f $ princatht的积极特征,并且具有合理的特征性奇异性。我们为$ g \ cdot x $ for $ p $稳定的封闭subvarieties $ x \ subset v $提供奇异性和定义方程式的结果。我们为存在$ g \ cdot x $的坐标环存在良好过滤提供标准。我们的结果为研究多种重要品种的几何形状提供了一种统一的,无特征的方法:舒伯特品种的多机,矩阵空间中的决定性品种,对称矩阵,对称对称的矩阵,对称对称矩阵以及某些Matrix Schubert schubert verieties in in consepties conspemies in in conspection seprie sempace serpace serpace serpace seepece e.g a e.g a e.g a。品种,较高的等级品种,等等。
We study the geometry of equivariant, proper maps from homogeneous bundles $G\times_P V$ over flag varieties $G/P$ to representations of $G$, called collapsing maps. Kempf showed that, provided the bundle is completely reducible, the image $G\cdot V$ of a collapsing map has rational singularities in characteristic zero. We extend this result to positive characteristic and show that for the analogous bundles the saturation $G\cdot V$ is strongly $F$-regular if its coordinate ring has a good filtration. We further show that in this case the images of collapsing maps of homogeneous bundles restricted to Schubert varieties are $F$-rational in positive characteristic, and have rational singularities in characteristic zero. We provide results on the singularities and defining equations of saturations $G\cdot X$ for $P$-stable closed subvarieties $X\subset V$. We give criteria for the existence of good filtrations for the coordinate ring of $G\cdot X$. Our results give a uniform, characteristic-free approach for the study of the geometry of a number of important varieties: multicones over Schubert varieties, determinantal varieties in the space of matrices, symmetric matrices, skew-symmetric matrices, and certain matrix Schubert varieties therein, representation varieties of radical square zero algebras (e.g. varieties of complexes), subspace varieties, higher rank varieties, etc.