论文标题
半球的双旋曲面
Biharmonic hypersurfaces in hemispheres
论文作者
论文摘要
在本文中,我们考虑了Balmuş-Montaldo-Soniouc在半球的情况下的猜想。我们证明,在$ s^{n+1} $的半球中,一个紧凑的非最小双旋化性高表皮必须是小型Hypersphere $ s^{n} \ left(1/\ sqrt {2}} \ right)$,但前提是$ n^{2} -H^{2} -h^{2} -h^{2} $ docks crange sign sign node sign nocks $
In this paper we consider the Balmuş-Montaldo-Oniciuc's conjecture in the case of hemispheres. We prove that a compact non-minimal biharmonic hypersurface in a hemisphere of $S^{n+1}$ must be the small hypersphere $S^{n}\left(1/\sqrt{2}\right)$, provided that $n^{2}-H^{2}$ does not change sign.