论文标题

队列布局的参数化算法

Parameterized Algorithms for Queue Layouts

论文作者

Bhore, Sujoy, Ganian, Robert, Montecchiani, Fabrizio, Nöllenburg, Martin

论文摘要

图$ g $的$ h $ Ququeue布局由其顶点的线性顺序和边缘分配为$ h $ queues,因此没有两个独立的队列巢的独立边缘。最低$ h $,以至于$ g $承认$ h $ quququeue布局是$ g $的队列数。我们提出了两种固定参数可处理的算法,这些算法利用图形的结构特性来计算最佳队列布局。作为我们的第一个结果,我们表明,确定图形$ g $是否具有队列数$ 1 $,并且计算相应的布局是固定参数时,当通过$ g $的treeDepepth进行参数时。然后,我们的第二个结果使用更限制的参数,即顶点封面编号来解决任意$ h $的问题。

An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the queue number of $G$. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph $G$ has queue number $1$ and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of $G$. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary $h$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源