论文标题
非本地非线性保护法的二阶准确TVD数值方法
Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws
论文作者
论文摘要
我们为一类称为“非局部配对模型”的非局部非线性保护定律提供了二阶准确数值方法,该法律最近由DU,Huang和Lefloch引入。我们的数值方法将基于二阶准确的基于重建的方案与适当的数值集成结合使用,用于局部保护定律。我们表明,所得方法是总变化减少(TVD),并收敛到弱解决方案。实际上,与局部保护法相比,我们的二阶重建方法将非局部相互作用核的核心收敛于独特的熵解决方案,但可以满足零接近零的一定生长条件。此外,作为我们方法方法中的非局部视野参数,我们恢复了一种众所周知的二阶方法,用于局部保护定律。此外,我们回答了DU,Huang和Lefloch关于解决方案的规律性的几个问题。特别是,我们证明弱解决方案中存在的任何不连续性都必须是固定的,并且如果相互作用内核满足一定的生长条件,则弱解决方案是唯一的。我们提出了一系列数值实验,其中我们研究了二阶方案的准确性,显示了非局部配对模型中的冲击形成,并研究溶液的规律性如何取决于磁通函数的选择。
We present a second-order accurate numerical method for a class of nonlocal nonlinear conservation laws called the "nonlocal pair-interaction model" which was recently introduced by Du, Huang, and LeFloch. Our numerical method uses second-order accurate reconstruction-based schemes for local conservation laws in conjunction with appropriate numerical integration. We show that the resulting method is total variation diminishing (TVD) and converges towards a weak solution. In fact, in contrast to local conservation laws, our second-order reconstruction-based method converges towards the unique entropy solution provided that the nonlocal interaction kernel satisfies a certain growth condition near zero. Furthermore, as the nonlocal horizon parameter in our method approaches zero we recover a well-known second-order method for local conservation laws. In addition, we answer several questions from the paper from Du, Huang, and LeFloch concerning regularity of solutions. In particular, we prove that any discontinuity present in a weak solution must be stationary and that, if the interaction kernel satisfies a certain growth condition, then weak solutions are unique. We present a series of numerical experiments in which we investigate the accuracy of our second-order scheme, demonstrate shock formation in the nonlocal pair-interaction model, and examine how the regularity of the solution depends on the choice of flux function.