论文标题

跨域识别热到可见的面部识别

Cross-Domain Identification for Thermal-to-Visible Face Recognition

论文作者

Fondje, Cedric Nimpa, Hu, Shuowen, Short, Nathaniel J., Riggan, Benjamin S.

论文摘要

域适应性的最新进展,尤其是应用于异质面部识别的域,通常依赖于限制性的欧几里得损失函数(例如$ l_2 $ norm),当两个不同域的图像(例如,可见和热的图像)被共同注册并进行时间同步。本文提出了一个新颖的域适应框架,该框架将新功能映射子网络与现有的深度特征模型相结合,该框架基于修改的网络体系结构(例如VGG16或RESNET50)。通过引入新的跨域身份和域的不变性损失函数来优化该框架,以减轻精确共同注册和同步图像的要求。我们提供了对所使用的功能和损失功能的广泛分析,并将提出的域适应框架与基于最新特征的域适应模型进行比较,该模型包含在不同的范围,姿势和表达式中收集的面部成像的困难数据集上。此外,我们分析了提出的框架的生存能力,以实现更具挑战性的任务,例如非额外的热到可见的面部识别。

Recent advances in domain adaptation, especially those applied to heterogeneous facial recognition, typically rely upon restrictive Euclidean loss functions (e.g., $L_2$ norm) which perform best when images from two different domains (e.g., visible and thermal) are co-registered and temporally synchronized. This paper proposes a novel domain adaptation framework that combines a new feature mapping sub-network with existing deep feature models, which are based on modified network architectures (e.g., VGG16 or Resnet50). This framework is optimized by introducing new cross-domain identity and domain invariance loss functions for thermal-to-visible face recognition, which alleviates the requirement for precisely co-registered and synchronized imagery. We provide extensive analysis of both features and loss functions used, and compare the proposed domain adaptation framework with state-of-the-art feature based domain adaptation models on a difficult dataset containing facial imagery collected at varying ranges, poses, and expressions. Moreover, we analyze the viability of the proposed framework for more challenging tasks, such as non-frontal thermal-to-visible face recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源