论文标题

数据驱动的求解器,用于强烈非线性材料响应

Data-Driven Solvers for Strongly Nonlinear Material Response

论文作者

Galetzka, Armin, Loukrezis, Dimitrios, De Gersem, Herbert

论文摘要

这项工作提出了一个数据驱动的磁静电元素元素求解器,该溶解器非常适合应对强烈的非线性材料响应。数据驱动的计算框架本质上是一个多目标优化过程,在遵守Maxwell方程时,尽可能与给定的材料数据尽可能紧密地匹配材料操作点。在这里,该框架以异质(本地)加权因子(每个有限元元素)扩展 - 根据材料行为在本地平衡目标函数。这种修改使数据驱动的求解器可以应对不平衡的测量数据集,即具有不平衡空间填充的数据集。在强烈非线性材料的情况下,这尤其发生,构成有问题的情况,这些情况阻碍了具有均匀(全球)加权因子的标准数据驱动求解器的效率和准确性。局部加权因子嵌入到无噪声数据的距离最小化数据驱动算法中,同样用于用于噪声数据的最大熵数据驱动算法。基于具有软磁性材料的四极磁铁模型的数值实验表明,所提出的修改会在溶液准确性和求解器效率方面取得了重大改进。对于无噪声数据的情况,局部加权因子通过数量级提高了数据驱动的求解器的收敛性。当考虑嘈杂的数据时,数据驱动的求解器的收敛速率会加倍。

This work presents a data-driven magnetostatic finite-element solver that is specifically well-suited to cope with strongly nonlinear material responses. The data-driven computing framework is essentially a multiobjective optimization procedure matching the material operation points as closely as possible to given material data while obeying Maxwell's equations. Here, the framework is extended with heterogeneous (local) weighting factors - one per finite element - equilibrating the goal function locally according to the material behavior. This modification allows the data-driven solver to cope with unbalanced measurement data sets, i.e. data sets suffering from unbalanced space filling. This occurs particularly in the case of strongly nonlinear materials, which constitute problematic cases that hinder the efficiency and accuracy of standard data-driven solvers with a homogeneous (global) weighting factor. The local weighting factors are embedded in the distance-minimizing data-driven algorithm used for noiseless data, likewise for the maximum entropy data-driven algorithm used for noisy data. Numerical experiments based on a quadrupole magnet model with a soft magnetic material show that the proposed modification results in major improvements in terms of solution accuracy and solver efficiency. For the case of noiseless data, local weighting factors improve the convergence of the data-driven solver by orders of magnitude. When noisy data are considered, the convergence rate of the data-driven solver is doubled.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源