论文标题

对称性纠缠在可整合场理论中通过formage bootstrap

Symmetry resolved entanglement in integrable field theories via form factor bootstrap

论文作者

Horváth, Dávid X., Calabrese, Pasquale

论文摘要

我们考虑可集成场理论的表单因素引导方法,以得出与与对称性解决的纠缠熵相关的复合分支点扭转场的矩阵元素。引导程序方程是以直观的方式确定的,并为大量的Ising字段理论和真正相互作用的SINH-GORDON模型提供了解决方案,均具有$ \ Mathbb {Z} _ {2} $对称性。通过执行各种限制和应用$δ$ -THEOREM仔细检查解决方案。还讨论了用于离散对称性的对称分辨率的问题。我们表明,纠缠式式设备是普遍预期的,我们确定了第一个转向式术语(在紫外线截止中)打破了它。我们还介绍了对称分解的von Neumann熵的完整计算,以在ISING模型的顺磁相的基础状态下进行间隔。特别是,我们计算出在带电和对称性解决的纠缠中的通用函数。

We consider the form factor bootstrap approach of integrable field theories to derive matrix elements of composite branch-point twist fields associated with symmetry resolved entanglement entropies. The bootstrap equations are determined in an intuitive way and their solution is presented for the massive Ising field theory and for the genuinely interacting sinh-Gordon model, both possessing a $\mathbb{Z}_{2}$ symmetry. The solutions are carefully cross-checked by performing various limits and by the application of the $Δ$-theorem. The issue of symmetry resolution for discrete symmetries is also discussed. We show that entanglement equipartition is generically expected and we identify the first subleading term (in the UV cutoff) breaking it. We also present the complete computation of the symmetry resolved von Neumann entropy for an interval in the ground state of the paramagnetic phase of the Ising model. In particular, we compute the universal functions entering in the charged and symmetry resolved entanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源