论文标题
对MRI胎儿脑图像合成的超声检查超声检查
Self-Supervised Ultrasound to MRI Fetal Brain Image Synthesis
论文作者
论文摘要
胎儿脑磁共振成像(MRI)提供了发育中的大脑的精美图像,但不适合第二种孕药筛查,为此使用了超声(US)。尽管专家超声检查员擅长阅读我们的图像,但与解剖图像紧密相似的MR图像对于非专家来说更容易解释。因此,在本文中,我们建议直接从临床美国图像中生成类似MR样图像。在医学图像分析中,这种功能也可能有用,例如自动使用US-MRI注册和融合。提出的模型是端到端的训练和自我监督,没有任何外部注释。具体而言,基于美国和MRI数据共享类似解剖潜在空间的假设,我们首先使用网络来提取共享的潜在特征,然后将其用于MRI合成。由于我们的研究不可用(在实践中很少)配对数据,因此像素级的约束是不可行的。相反,我们建议通过在图像域和特征空间中的对抗性学习来实施分布在统计上是无法区分的。为了使我们与MRI之间的解剖结构正规化,我们进一步提出了对抗性结构约束。提出了一种新的跨模式注意技术,以鼓励多模式知识融合和传播来利用非本地空间信息。我们扩展了考虑3D辅助信息(例如3D邻居和3D位置索引)的方法,也可以使用体积数据,并表明这可以改善图像合成。与实际胎儿MR图像和其他合成方法相比,对所提出的方法进行了定量和定性的评估,证明了其合成现实MR图像的可行性。
Fetal brain magnetic resonance imaging (MRI) offers exquisite images of the developing brain but is not suitable for second-trimester anomaly screening, for which ultrasound (US) is employed. Although expert sonographers are adept at reading US images, MR images which closely resemble anatomical images are much easier for non-experts to interpret. Thus in this paper we propose to generate MR-like images directly from clinical US images. In medical image analysis such a capability is potentially useful as well, for instance for automatic US-MRI registration and fusion. The proposed model is end-to-end trainable and self-supervised without any external annotations. Specifically, based on an assumption that the US and MRI data share a similar anatomical latent space, we first utilise a network to extract the shared latent features, which are then used for MRI synthesis. Since paired data is unavailable for our study (and rare in practice), pixel-level constraints are infeasible to apply. We instead propose to enforce the distributions to be statistically indistinguishable, by adversarial learning in both the image domain and feature space. To regularise the anatomical structures between US and MRI during synthesis, we further propose an adversarial structural constraint. A new cross-modal attention technique is proposed to utilise non-local spatial information, by encouraging multi-modal knowledge fusion and propagation. We extend the approach to consider the case where 3D auxiliary information (e.g., 3D neighbours and a 3D location index) from volumetric data is also available, and show that this improves image synthesis. The proposed approach is evaluated quantitatively and qualitatively with comparison to real fetal MR images and other approaches to synthesis, demonstrating its feasibility of synthesising realistic MR images.