论文标题

半线性Euler-Poisson-Darboux方程:临界耗散的波案例

The semilinear Euler-Poisson-Darboux equation: a case of wave with critical dissipation

论文作者

D'Abbicco, Marcello

论文摘要

在本文中,我们研究了Euler-Poisson-Darboux方程的Cauchy问题的存在,具有功率非线性:$$ u_ {tt} -u_ {xx} + \fracμ{t} + \fracμ{t} x \ in \ mathbb {r} \,。$$这里$ t_0 = 0 $(单数问题)或$ t_0> 0 $(常规问题)。该模型代表具有关键耗散的波方程,从某种意义上说,拥有全局小数据解决方案的可能性不仅取决于功率$ p $,还取决于参数$μ$。我们证明,假设在$ l^1 $中以少量的初始数据,并且在能源空间中,对于$ p> p_c = \ max \ {p_0(1+μ),3 \} $,对于任何$μ> 0 $,$ p_0(k)$是半偏移$ k $ k $ k $ k $ k $ k $ k $ k. 0 $> 0 $,其中$ p_0(k)是至关重要的。 $ 3 $是H. Fujita获得半线性热方程的关键指数。我们还为多维EPD方程$$ U_ {tt}-ΔU + \fracμ{t} \,u_t = | U | U | U |^p \ ,, quad T> t_0,\ x \ in \ mathbb {r}^n \ p powers和powers和powers和powers和powers和powers和powers和powers和powers和足够大的$μ$。

In this paper we study the existence of global-in-time energy solutions to the Cauchy problem for the Euler-Poisson-Darboux equation, with a power nonlinearity: $$u_{tt}-u_{xx} + \fracμ{t}\,u_t = |u|^p \,, \quad t>t_0, \ x\in\mathbb{R}\,.$$ Here either $t_0=0$ (singular problem) or $t_0>0$ (regular problem). This model represents a wave equation with critical dissipation, in the sense that the possibility to have global small data solutions depend not only on the power $p$, but also on the parameter $μ$. We prove that, assuming small initial data in $L^1$ and in the energy space, global-in-time energy solutions exist for $p>p_c =\max\{p_0(1+μ),3\}$, for any $μ>0$, where $p_0(k)$ is the critical exponent for the semilinear wave equation without dissipation in space dimension $k$, conjectured by W.A. Strauss, and $3$ is the critical exponent obtained by H. Fujita for semilinear heat equations. We also collect some global-in-time existence result of small data solutions for the multidimensional EPD equation $$u_{tt}-Δu + \fracμ{t}\,u_t = |u|^p \,, \quad t>t_0, \ x\in\mathbb{R}^n\,,$$ with powers $p$ greater than Fujita exponent and sufficiently large $μ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源