论文标题
半盲和L1稳健系统识别贫血管理
Semi-Blind and l1 Robust System Identification for Anemia Management
论文作者
论文摘要
慢性疾病,例如癌症,糖尿病,心脏病,慢性肾脏疾病(CKD),需要一种药物管理系统,以确保患者对药物剂量的稳定输出稳定而强大的输出。就CKD而言,需要患者缺乏红细胞计数和外部人类重组红细胞生成素(EPO)以维持健康的血红蛋白水平(HB)。贫血是CKD患者的常见合并症。为了为CKD患者而不是传统的基于人群的方法建立高效且稳健的贫血管理系统,需要采用个性化的患者特定方法。因此,需要针对患者特异性药物剂量反应的个性化系统(患者)模型。在这项研究中,对个别患者进行了CKD的系统识别。对于面向控制的系统识别,应用了两种可靠的识别技术:(1)考虑到零初始条件,以及(2)考虑到非零初始条件的L1稳健识别和(2)半盲稳定系统识别。将患者的EPO数据用作输入和HB数据作为系统的输出。对于本研究,通过使用特定于患者的数据来开发个性化的患者模型。 ARX一步预测技术用于实际患者数据的模型验证。通过计算最小平均方误差(MMSE)来比较这两种技术的性能。相比之下,我们表明,与L1鲁棒识别相比,半盲稳定识别技术可获得更好的结果。
Chronic diseases such as cancer, diabetes, heart diseases, chronic kidney disease (CKD) require a drug management system that ensures a stable and robust output of the patient's condition in response to drug dosage. In the case of CKD, the patients suffer from the deficiency of red blood cell count and external human recombinant erythropoietin (EPO) is required to maintain healthy levels of hemoglobin (Hb). Anemia is a common comorbidity in patients with CKD. For an efficient and robust anemia management system for CKD patients instead of traditional population-based approaches, individualized patient-specific approaches are needed. Hence, individualized system (patient) models for patient-specific drug-dose responses are required. In this research, system identification for CKD is performed for individual patients. For control-oriented system identification, two robust identification techniques are applied: (1) l1 robust identification considering zero initial conditions and (2) semi-blind robust system identification considering non-zero initial conditions. The EPO data of patients are used as the input and Hb data is used as the output of the system. For this study, individualized patient models are developed by using patient-specific data. The ARX one-step-ahead prediction technique is used for model validation at real patient data. The performance of these two techniques is compared by calculating minimum means square error (MMSE). By comparison, we show that the semi-blind robust identification technique gives better results as compared to l1 robust identification.