论文标题

从柔性转子中脱离的螺旋涡流结构的稳定性

Stability of Helical Vortex Structures Shed from Flexible Rotors

论文作者

Rodriguez, Steven N., Jaworski, Justin W., Michopoulos, John G.

论文摘要

提出的研究是出于需要发现基础转子流体结构相互作用与涡旋动力学与疲劳性能以及柔性转子叶片,其轮毂及其支撑上部结构之间的连接的动机。为了这一努力,研究了从柔性转子叶片中脱落的尖端涡旋的时间稳定性特征。采用气弹性自由涡流唤醒方法来模拟螺旋尖端涡流和相关的速度场。采用线性特征值稳定性分析来量化稳定性趋势(生长速率诉扰动波数)和尖端涡流的生长速率时间演变。首先进行具有刚性叶片及其产生尖端涡旋的规范转子的模拟,以验证此处采用的稳定性分析。接下来,使用国家可再生能源实验室5MW参考风力涡轮机底座设计固定的风力涡轮机,以研究转子弹性弹性对尖端涡流稳定性的及时演变的影响。显示叶片柔韧性可降低尖端涡流对低波数扰动的敏感性,也降低了叶片的稳定性,也降低了叶片的稳定性,还可以降低生长速率的幅度,并改变生长率峰依赖于扰动波数的峰值,而所有这些都没有报道过rotorcraft文献。当前的研究旨在洞悉转子尖端涡流运动学和稳定性,以量化疲劳负荷及其效果,从而最大程度地减少不良叶片 - 涡流相互作用的效果,例如过度的噪声发射和较大的刀片振动也影响疲劳性能。

The presented investigation is motivated by the need to uncover connections between underlying rotor fluid-structure interactions and vortex dynamics to fatigue performance and characterization of flexible rotor blades, their hub, and their supporting superstructure. Towards this effort, temporal stability characteristics of tip vortices shed from flexible rotor blades are investigated numerically. An aeroelastic free-vortex wake method is employed to simulate the helical tip vortices and the associated velocity field. A linear eigenvalue stability analysis is employed to quantify stability trends (growth rate v. perturbation wavenumber) and growth-rate temporal evolution of tip vortices. Simulations of a canonical rotor with rigid blades and its generation of tip vortices are first conducted to validate the stability analysis employed herein. Next, a stationary wind turbine is emulated using the National Renewable Energy Laboratory 5MW reference wind turbine base design to investigate the impact rotor aeroelasticity has on tip vortex stability evolution in time. Blade flexibility is shown to reduce the sensitivity of tip vortex destabilization to low wavenumber perturbations, also blade-pitch reduces growth-rate magnitude and alters the growth-rate peak dependence on perturbation wavenumber, all of which have in the past not been reported in the rotorcraft literature. The current investigation aims to develop insight into rotorcraft tip vortex kinematics and stability to work towards quantifying fatigue loading and its effects, minimizing adverse blade-vortex interaction effects, such as excessive noise emission and large blade vibrations also affecting fatigue performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源