论文标题

通配符的压缩:所有精确或所有最小击球集

Compression with wildcards: All exact, or all minimal hitting sets

论文作者

Wild, Marcel

论文摘要

我们的主要目标是所有最小击中一般超图的压缩枚举(基于通配符)。据作者的最佳知识,由于TODA,唯一的压缩尝试是基于BDD的,与我们的技术有很大不同。数值实验表明,当压缩程度高时,传统的一对一枚举方案无法与压缩枚举竞争。在这两种情况下,我们的方法效果特别好:压缩所有E X A C T命中集,或所有M I N I M U M-基数击中集。在许多方面,此版本的结构比其前身更好,还包含一些新材料(例如Rado定理的应用)。

Our main objective is the COMPRESSED enumeration (based on wildcards) of all minimal hitting sets of general hypergraphs. To the author's best knowledge the only previous attempt towards compression, due to Toda, is based on BDD's and much different from our techniques. Numerical experiments show that traditional one-by-one enumeration schemes cannot compete against compressed enumeration when the degree of compression is high. Our method works particularly well in these two cases: Either compressing all e x a c t hitting sets, or all m i n i m u m - cardinality hitting sets. In many aspects this version is better structured than its predecessor, and also contains some new material (such as an application of Rado's Theorem).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源